Mechanism of Catalytic Microtubule Depolymerization via KIF2-Tubulin Transitional Conformation.

نویسندگان

  • Tadayuki Ogawa
  • Shinya Saijo
  • Nobutaka Shimizu
  • Xuguang Jiang
  • Nobutaka Hirokawa
چکیده

Microtubules (MTs) are dynamic structures that are fundamental for cell morphogenesis and motility. MT-associated motors work efficiently to perform their functions. Unlike other motile kinesins, KIF2 catalytically depolymerizes MTs from the peeled protofilament end during ATP hydrolysis. However, the detailed mechanism by which KIF2 drives processive MT depolymerization remains unknown. To elucidate the catalytic mechanism, the transitional KIF2-tubulin complex during MT depolymerization was analyzed through multiple methods, including atomic force microscopy, size-exclusion chromatography, multi-angle light scattering, small-angle X-ray scattering, analytical ultracentrifugation, and mass spectrometry. The analyses outlined the conformation in which one KIF2core domain binds tightly to two tubulin dimers in the middle pre-hydrolysis state during ATP hydrolysis, a process critical for catalytic MT depolymerization. The X-ray crystallographic structure of the KIF2core domain displays the activated conformation that sustains the large KIF2-tubulin 1:2 complex.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aurora B Inhibits MCAK Activity through a Phosphoconformational Switch that Reduces Microtubule Association

BACKGROUND Proper spindle assembly and chromosome segregation rely on precise microtubule dynamics, which are governed in part by the kinesin-13 MCAK. MCAK microtubule depolymerization activity is inhibited by Aurora B-dependent phosphorylation, but the mechanism of this inhibition is not understood. RESULTS Here, we develop the first Förster resonance energy transfer (FRET)-based biosensor f...

متن کامل

Full-length dimeric MCAK is a more efficient microtubule depolymerase than minimal domain monomeric MCAK.

MCAK belongs to the Kinesin-13 family, whose members depolymerize microtubules rather than translocate along them. We defined the minimal functional unit of MCAK as the catalytic domain plus the class specific neck (MD-MCAK), which is consistent with previous reports. We used steady-state ATPase kinetics, microtubule depolymerization assays, and microtubule.MCAK cosedimentation assays to compar...

متن کامل

Allicin inhibits cell polarization, migration and division via its direct effect on microtubules.

Allicin (diallyl thiosulfinate) is a major biologically active component of garlic that is known to inhibit cell proliferation and induce apoptosis. The effects of allicin are attributed to its ability to react with thiol groups. However, the mechanism underlying the cytostatic activity of allicin, as well as the identity of the relevant subcellular targets, are not known. In the present study,...

متن کامل

2-Methoxyestradiol suppresses microtubule dynamics and arrests mitosis without depolymerizing microtubules.

2-Methoxyestradiol (2ME2), a metabolite of estradiol-17beta, is a novel antimitotic and antiangiogenic drug candidate in phase I and II clinical trials for the treatment of a broad range of tumor types. 2ME2 binds to tubulin at or near the colchicine site and inhibits the polymerization of tubulin in vitro, suggesting that it may work by interfering with normal microtubule function. However, th...

متن کامل

Three microtubule severing enzymes contribute to the “Pacman-flux” machinery that moves chromosomes

Chromosomes move toward mitotic spindle poles by a Pacman-flux mechanism linked to microtubule depolymerization: chromosomes actively depolymerize attached microtubule plus ends (Pacman) while being reeled in to spindle poles by the continual poleward flow of tubulin subunits driven by minus-end depolymerization (flux). We report that Pacman-flux in Drosophila melanogaster incorporates the acti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell reports

دوره 20 11  شماره 

صفحات  -

تاریخ انتشار 2017